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EULERTAN-LAGRANGIAN RELATIONSHIPS IN MONTE CARLO STMULATIONS

OF TURBULENT DIFFUSION*

J. T. lee and G. L. Srone
Armospheric Sciences Group (MS D466)
Los Alamos National Lataratory
Los Alamos, NM 87545

1. INTRODUCTION

Monre Carlo techniques have been used 1in a
number of studies fto aimulate turbulenr diffueion
in rhe atmosphere. In rhese studies the
Lagrangian velociry aurocorrelation function waa
used to calculate the frajectories of a large
number of tracer particles through a rurbulent
flow fleld. One difficulty 1in applying rthia
method 18 determining the Lagrangisn inregral
time acale, easpecially for nonhomogenous flows
such ar the planetary boundary laye:. Scaling
relationships and rheoreti{cal results have heen
used fo relate the lagrangian rime acale to the
local Eulerian properties of the turbulence which
can be measured Jdirectly.

In thin paper we present a Monte Carlo
technique which uses the Fulerian apace-t{me
veloceity autncorrelatfon funcrfon to calculate
particle trajectories. Thia method {8 Ahown )
he  equivalent ro  the  lagraonglan  approach o
homogencous  turbulence, and {tR  extensfon to
nonhomogencoun cond{t {onu Apprars to he
atralphtforward, We also derive an analyife
relatfonship between the lagrangian time Acale
ad the Enlerfan apace and time nealen.

2. THEORETTCAL ANALYS IS

We connlder one-dimenpfonal diffanlon fn a
statfonnev, homogencoun  fleld of turbulenco. A
typleal  particle trajectory in {Hlunt rated
schemat feally tn Fig. I where t fa the t e
after releane of the partlcle, v ta the cronn:
wind coordinate, and v ftu the grous wind
componenl of the turbulent  velocity, A large
number  of  particle trajectorica ate used  to
caleal vie partiecle diaplacoment  wtat it len  nueh

na W), where the overbar denoter an ennenb e
average,

In fhe lagrang lan approach parifels
Bajectorien are caleulated tn n oatep by ntep
woanoer i Che rolattonn

hy = v(t)he )

v(hv %) = w(1) Rl(ﬂl) I v’ ()
AMhin wink  san mupported by the 1,4, Avmy
Atmonpherte S tences labovatory  and  the U 1,
Tapt ot Fneipv, We gratefully  acknowled: o
unetul  dipcannfons with  Sumner Rare, Feank

Glitord, and WEilfan Chmntade,
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Figs 1. Particle Trajectory
where R Iu the Lagrangian veloclty
nulnvurr«-"nlnn function which dependa unl; on the

time geparatfon v, R(v) = v(1)v(r § t)/v/. Thin
definition of R (1) {8 valtd tor arblitrary values
of t, hut Eq. l'l) I valid only tor a waall time
ntep A, The velocity v I a normal rawdom
variable which I stattiatically independent ol
v(t). The moan of v/ e zero, and the varfance
munt mat lulty the relat fon

v? - v u“an) ()

fn order tor the varianes of  tbhe parttele
velocftien to equal the Held vt fanee v'. e
Markay pracenn defned by V. (?) produacen  an
exponent tal  mutoconielatfon tunerfon, "I,(l) -
ernpC 1/t ), where 1t I the Tagrangian  Integral
time peale,  Thin procenn converpgen to a solat fon
that ta tndopendent  of  the  atep natze ht tor
ht o, The numerteal  repult  for the mean

A are part fele dfaplacenont YO tor oa qpetnl
wonres  apaoen with  the elannteal Tavior (1901)
i tunton Yeunlt tor nn wxponent fal

aut ocorrelat fon funet ton ap nhown by llanon
(1979), A wmethod Taor analysing o Hiofte alze,
fintte duratfon HOUN o In promeint ol In »n

cumpanton paper, Lee and Stone (1981),

Sl t he lslorian Lut Lagpranpgian
atatiatleal  properifen of e turbulent field
contafn the name Intormat bon, pmrticie
trajectortes can alpo he  caleulated untng the
Fulevian atatintten,  In the firat part  of  onr
analymln we une an Euloy ban eoterences breame which



moves with the mean wind epeed G. This will be
referred to as the ccnvectlve reference frame and
will be denoted by the subscript C., To calculate
the particle trajectories 1in rhis reference
frame, Eq. (2) is replaced by the relation

vit + 8t) = vit) Rp(by,80) + v’ (4)

where Re 18 the Fulerian space-time velocity
autocorrelation function in the convective

reference frame. Yr depends ouly on the spatrial
separation ¢ and the time separation 7, Ro(Z,5) =
WYYy FE0F7T3/V. In Bq.  (4) R (8y,6¢)
in) coupled to v(r) weaince 8y = v(t)é¢ From Pq.
(1),

A relarfon vetween R (&t) and (6y,5t) can
he obtained bty mulriplylfng Equ. (Z) and (4) by
v(*), taking the ensemble average, and equating
the resulting right hand s{des of the e¢quations.
This relatfon, which is valid only for a tlme
srep 6t << f» can be written as

Ri(80) = vI(EIRG(By = 4(t)6E, 88 /vT  (5)

The ensacmble average In Eq. (5) can be evaluated
1f the probabiliry donsity function for v
and the functional form of RC(C,I) are known., We
agsume that v {d n normally dlastributed  random
variahle with A_zero mean  and a4 Atandard
deviarion of 0 « (v-’)l 2. 1n our annlynin it s
convonldent  to let v = g,n where n ta a random
varlable with n = 0, n’ = 1, and o probabllity
deantty function P(n) = (21()_‘“ x-xp(-n""/'l).
Stnce the wiae of Eqo (2) produces an exponential
for Ri(e) 1t seema Uikely that Fq. (4) wil

prmlnm" an  expouenttlal  tor R‘:(C.t). We  have
verifiod thia by numerical Monte Crrlo
experiment u. Our results ghow that the  Fulerfan
approach CONVOTROR to a solutfon that s
fndependent ot the step atze &t only tf R. in of
the form Ro(C,1) = c-xp(«lf:l/l,)c'xp(-w/t(:) whore [,
and te are the Fulerfan frntegral longth and  time
acalen  In the convective retference frame.  Unrfug
theae expresdalone for v oand R(._, Eqo (%) can he
writton an an Integral relatfon

. U I
R (ht) = @iy exp CAt/r) [ nla7B0n /7
o

(’I»

vhere the parameter a tn defined by a = uvf»t/l..

The tntegral tn Bg.o (6) dependn only on the
parameter a. It can be evaluated to obtaln R an
an fupetion ot &ty o | 1L, and Yo tor &t < t, .,
However . a wore getrrval thl wneful tenult can )v‘v
ohtatned by nortng  that | for an  exponent ial

wtocorrelatton function, ty can be obtatined from
the “wlatton, Clttord (IW!'.’S'.

AN A:m» o L K@) /an) )

The 1lim{ting wvalue of R, a8 8t + C can be
obtained by cxpanding the exponentials
exp(-6t/t;) and exp(-an) 1in Eq. (6) for small
values of 6t. This gives a series of Iinregrals
which can be eraluated analyrically.
Substituting the resulting expresslion Into Eq.
(7) provides cthe desired relation between the
Lagrangian and convective integral scales

1ty = (1/rg) + (8/m1/2 o/ (8)

It 18 useful t5 express Eq. (B8) in terms of the
Fulerian parameter a a rC/L since this
parameter has been used in previous studies of
Eulerian-Lagrangian relations, e.f., Philip
(1967) and Baldwin and Johnson (13%72). The
result is

r/te = V(L B/ 2 0 (9

A priori a {8 expected to be of order uniry, and
fora = 1, t,/r, =« 0.39,

The statistical propertles of rurbulence are
normally  measured {n s flxed-frame Fulerian
coordinate system which we will denote hy the
tubseript E. Since t, cannot be caslly measured,
it {8 useful to relate o to tg. This can  be
dotie by notiag rhat the structure of homogencous
tgotroptc turbulence {s favarfant under a anfform
tranalation of the coordinate system. Therefore,
the three-dimenstonal  Fulertan  autocorrvelation
functions Ry and R(, are related hy the teans
tormat fon '

Rie(Bx, By, 62, At) = Re (AKX = Hx - ubt, by, Az, At)

(1)

where 4 18 the mean wind speed and x and X are
the mean wlad  coordtaaten  n the  Tixed  and
convective reforence  framen, respectively. We
apmume  that R, yarfes exponentially in 6X for
conntatency with the sxponenttial vartatton o by
{tn the above anabtynln, .o,

RACAX AV, 008) = oxpC CLAXTEEAY DY /1 expC At/ 1)

an

Unfng Equ.  (10) and (L1, 11 temporal variatton
of Ry ean he exprowned  an R (0,0,0,80) -
exp{ous e 1 Y expl S/, The  temporal vartat bon
ot R can alno e exprenned  an "l."”.”.”-"") -
expC b/,

Equatfay  thene two exprenntonn
Yeada 1o

Ve = (/0 0 (a1 an

Pago  (12) can olna be exorenacd fn termn of  the
parameter w



te/tg = 1 + (a/1) (13)

where 1 s the turbulence intensity, { = g /u.
For low turbulence intensity, i m~ 0.1, te is an
order of magnitude larger than tp.

The assumption thar RC varies exponentially
in 86X and 6y with a single length scale .
violates the Karman &nd Howarth (1938) relation
for the spatial variation of the autocorrelation
functicn in three-dimensional homogeneous
igsotroplc turbulence. However, Eqs. (9) and

(13 agree very «c¢losely with more exac.
calculations which uge the Karman and Howarth
relation as will be discussed in Section 3,

An equation for g = t /tE can he obtained by

eliminating tc from Fqs. 8) and (12) resulting
in

B= - @ /a - @/mYmt e

Since the lTength scale 1, 18 the same in the fixed
and the convecrive reference framen, Iq. (14)
provides a relation for calculating t, 1f the
Eulerfan parameters fgy I, and 1 are known. This
result can  he expressed (o terms of a by
multiplytng Eq. (9) by Fq. (13)

Bo= (14 (/][0 + B/ 20 (0%)

For am 1 oand 1 <1 Eqe (19) reduces tg w4
where  the constant ¢ = a/(1 + (ﬂ/n)lh:x). For
o= 1, C= 0.3 whitch tn within the ranpe ot
theoret feal et tmates  summarizod by Panquill
(1974) fn which the "countant” € ranges from 0,99
tao 0.8,

the  direct  peanurement of 1, s not ecany
alnce 1t requiresn an arvay ol anemometern along a
Itne that hae fixed orfentation relative to the
mean  wind, Therefore, the Tayloy or  frogen
turhulence hypothenta 1R trequently uaed  to
determine Lo In this approxtmatton (v {e  annemed
that  the n ructure of  the turbulence  th the
convertive vatorence frame 1a frozen o time  and
In convectel  with  the mean wind npesd . Thin
Teadn to L=ty and permtta L to he  eat fanted
from n atngle I'l'xvd polnt Ealer{an neanurement of
tree  Subatitatton of thin approxtmat fon fnto T,
(‘,‘) leadn 1ot Com . and ., theretore,  the
convect fve antocorrelat tan funct fon R, in
fndopendent  of A, Setting 1, - ity tn Fae (1HA)
vesulte o b= 0,68/, whieh tn alno withitin 4 he
ranpe ot thearetteal  renults nummarlzed  hy
angul 1L (1974),

Add it tonal funtpght fnto the Tavlo
hypothenta can be ohtatned by oxpreanting 1./ Cn
termn of the parametora a and 1o Unlog By, t‘l V)

and the defintttonn of a and 1 we obtadn

"/"'l-‘. -1 (/) (16)

It 1is seen that {/a << 1 18 a necessary
condition for assuming L ~ utp., Usirg a~ 1 in
Eq. (16) may provide a hetter way of estimating
L 1f t and {1 are known, but this 18 not cerrain!
Although a 18 of order wunity, {t may vary
sigrnificantly for different €low fields.

3. COMPARISONS TO MONTE CARLO STIHULATIONS AND
OTHER THEORIES

The analytic results presented in Section 2
were derived trom the hypothesis that valid Monte
Carlo simulations of turbulent diffusion can be
formulated 1in either the Lagrangian or the
Fulerian reference frame. More apecificaliy, we
have ussumed that either Eq. (2) or Fq. (4) can
be used in thes simulations. In order to verify
this hypothesis and the analyric results we have
conducted extensi{ve Monte Carlo simulations using
hoth the lagrangfan and the Ruleriar  approach.
Typical results are predented here.

In both approaches the varfence of the
random velocity v’ must he related to R‘(m-) as
shown 1in  Fq. (3). Therefore, in the Balerfan
approach Rll(ﬁr) must he calculated at  oach  time
step Ffor the specified vatues of foo L, and o,
This can be done using . (5) hy' numur(cnle
calculating the ensemble average at each time
atep. If can he done more caslly using  the
relarfon Ry (b)) = exp{-&t/t ‘) where tp 18 related
to tn, L, and ay by Eq. (R). As a consiatency
chee we performed  the caleulatioas beth ways,
and the results were the wame,

The standard  deviation of the particle
displacements, o = (y7‘)1/:", ta shown In Flg.o 2,
The solid curve “wad  obtefued  from  the Taylor
(1921 Antegral  oquarfon  using  ac exponeat fad
Lagrangtian autoenrrelat ton furetfon, R, -
"K"(“‘/'I.)‘ ™in result can he expresnsed an’

a1 oy = ) e "M G

Tha iysbols  are  mumerical resultsa  that  were
caleulated fn the convective refersace frame an o
functton  of t tor wpecitted vatuen of t. 1, and
U . Fraemble averages were obtatned by averaging
nver 10,000 part el trajectorion, The
Laprangian fntegial tims coale l“ win  valeulated

10 : ' ’
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numerically wusing the velocities along these
trajectories., This value c¢¢ ¢t was used to
normalize t and o  for dire:t comparison to Eq.
(17). It is seen "that the numerical results
reproduce the Taylor diffusion curve very well.
Since the Taylor :urve is an exact solutior in
he Lagranglan reference frame, this comparison

‘monstrates the validity of the Fulerian Monte

‘lo approach.

A comparison of analytic and Monte Carlo
resul. : for the autocorrelation function is

presen ed in Fig. 3. An  exponential
autoco: relation function was used as input in the
Monte Carlo calculations, Re(Z,1)

- exP(“ICIfL)exp(-t/rC), and the s8olid curve
shows the temporal variation of this function for
{ = 0, The values used for the {input parameters
te, L, and o, resuit in & value of a = 0.91. The
square symboYs are calculated values of R, in
which 10,000 parricle trajectories were used to
evaluate the ensemble averages. The dashed curve
is the analytic solution for R, which, using Eq.
(9), can he  written as = exp(-t/t) =
exp[(—r/rc)(l + (8/n)l/2a)]. This can also bhe
expressed a8 R = Ru(C = (8/1:)l 2av1.1) which
shows that drops o?f more rapldly in time than
R~ because the "average" va}ys of the particle
dYﬂPlncumenr ta ¢ = (8/x)/*g 1. The analytic
and numerical results are a’most ident ical.
Equally gpood agreement was obhtained over a large
range of values of a, Go1 < a € 6.4, bhy varying
the {nput values ot teo Ly and o,

o
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Fig. 1. Atocorrelation Fanctlonn

A compnrinon of the ratio of the Lagrangtan
to the convective Integral time ncaleon  1a nahown
In Fip, 4 an a funetion of the Bulertan
pavametor @, The molfd curve  fa the analytie
ronult  from Bq.  (9), and the aquare aymbole arve
the Monte Carto resulta, ‘The danhed curve will
be dtreunned  later, ‘Me close apreesment of the
reaultn th Figa, 3 and 4 demonatrate conalntercy
hetweon the analytle remultw fn Sectfon 7 and the
numerfcal Monte Carlo atmulattons ustng ¥q.  (4),

There I A large bhody of literaturve on
Fulertan Lagrangtan velattonshipe.  Sammarteas of
thia work can he found, for example, fn  Pangquill
(1974), and  the general mathemat tenl nature of
the problem {n dincunned by Lumlay (1962). 1t
peemr 1o be generally nceepted that there te no
exact  theoretical relat fonahip het weon the
Lagrangian  and  Falertan  atatistion, However,
there are a "arge number of approximate and neml

1.0 T T T T T T
ANALYTIC i
0.8 L] MONTE CARLO o
— =~ THEORY, BALOWIN AND
- JOHNSON b
L 0.6 -1
~
- = -
0.4 -
Sy -4
02— \\‘\“._
[o) 1 1 1 )] A 1
[] 20 40 60
a
Fig. 4. Ratio of lagranglan to Convectiv. Time
Scales

empirical relations for first order staristical
properties guch as the veloclity aurocorrelation
function and the corresponding integral scales.
One of the more .ofur theoretical approaches 1a
the (Independenre hypothesis suggested by Corrsin
(1959) in which rhe Lagrangian autocorrelation
function 18 velated to the Fulerian convective
apace-time autocorrelation function by properly
weighting the latter to acchrunt for the spatial
distribution of diffusing particles. Thisg
gencral  approach was used by Philip (1967) and
Saffman  (1963) to relate R (1) to  Re(h,t)
Philip’s analysis has been extended and {mproved
by Baldwin and Johnson (1972) who also provide an
excellent survey and evaluatfon of existing
theorfes aad dara. It  Reems  appropriate  to
evaluate our analytic solutf{ons by comparison to
the theory of Baldwin  and  Johnson  since thefr
results  represent the moat detafled and complete
application of Corrsfn’s independence hypothests,
Thetr results are also {n general agreement with
many other theories and experiment s,
Expervimental  studfes  are bhelng conducted by 14
and Meronoy (1982) to further verify Baldwin  apd
Johnwoa' s theory,  and chetr foaftdial data are An
clone agreement with the theory,

Baldwin and Johnuon’ s vesults tor l./t(. nre
compared  to our  analytie reanlts to Flpe A A
comparinon ol l(,/( s dnomhown ar oo functlon of the
parameter a/t in Iv"l'){. b The parameter = ty /0
Ta compared (n Fige 6 an a fanction of 1 for g
range of  valuen ol a.  The very elone agreement
bhetwoon  thene  twoe theorlien Ia remarhabhlo,
enpectally  ainee  Baldw!in  and  Johnnon  uae the
oxact form  of  the  Karman  and  Mowarth  (1997)

relation for 1he three -dfmenntonal  apattal
vivrtat ton  of l((‘ . They  alno auae t he hont
avatlable experbneut al datan to wpectly  the

temporal variatton of Roo o Thin apreement may  be
parttally fortufloun, but {1t alno 1Hluntrates the
value of the Nalerian  Mente  Cavlo approach. to
turbhulent At fanton. Thiys approach ta equivalent
to the Lagrangian Monte Caclo approach and to the
random force theory uned by GUitord (1982) nnd by
Lee  and  Stone (1981), M™erefore, the clone
agreement  with (he theory of Baldwlio and Jolmaon
further ontab! tahen  he
vandom lorce tleary,

wne el nenn ol the

Ao COMOLUN N

The  rtenultan  of  thin atady show that Moate
Carlo ptomalattonn of  diftunton o homopensoun



turbulence can be formulared in terms of the
kulerian space-time velocity autocnrielation
funcrion. Numerical results obtained using this
approach agree with rasults obtained by Tajylor
(1921) using the Lagrangfar autocorrelatiion
function. We have used the equivalence of the
Lagrangian and Eulerian Monte Carlo approaches to
derive analytic relarions between the Lagrangian
inregral time scale and the Fulerian integral
space and time scales, These analytic results
have been veri{fied by comparison to Monte Carlo
simulations and to other theoretical results.
They are in general agreement with many existing
theories and semi-empiliical relations.
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